Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Competenze
  • Attività

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Competenze
  • Attività
  1. Pubblicazioni

Using a supervised machine learning algorithm for detecting faking good in a personality self-report

Articolo
Data di Pubblicazione:
2020
Abstract:
We developed a supervised machine learning classifier to identify faking good by analyzing item response patterns of a Big Five personality self-report. We used a between-subject design, dividing participants (N = 548) into two groups and manipulated their faking behavior via instructions given prior to administering the self-report. We implemented a simple classifier based on the Lie scale's cutoff score and several machine learning models fitted either to the personality scale scores or to the items response patterns. Results shown that the best machine learning classifier—based on the XGBoost algorithm and fitted to the item responses—was better at detecting faked profiles than the Lie scale classifier.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
assessment; measurement; personality; statistics; testing
Elenco autori:
Calanna, P.; Lauriola, M.; Saggino, A.; Tommasi, M.; Furlan, S.
Autori di Ateneo:
SAGGINO ARISTIDE
TOMMASI Marco
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/724159
Pubblicato in:
INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT
Journal
  • Dati Generali

Dati Generali

URL

https://onlinelibrary.wiley.com/doi/full/10.1111/ijsa.12279
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0