Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Insegnamenti

Unbiasing collaborative filtering for popularity-aware recommendation

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Abstract:
We analyze the behavior of recommender systems relative to the popularity of the items to recommend. Our findings show that most popular ranking-based recommenders are biased towards popular items, thus affecting the quality of recommendation. Based on these observations, we propose a new deep learning architecture with an improved learning strategy that significantly improves the performance of such recommenders on low-popular items. The proposed technique is based on two main aspects: resampling of negatives and ensembling of multiple instances of the algorithm. Experimental results on traditional benchmark datasets show that the proposed approach substantially improves the recommendation ability by balancing accurate contributions almost independently from the popularity of the items to recommend.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Big data; Collaborative filtering; Deep learning; Recommender systems
Elenco autori:
Caroprese, L.; Manco, G.; Minici, M.; Pisani, F. S.; Ritacco, E.
Autori di Ateneo:
CAROPRESE Luciano
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/794947
Titolo del libro:
CEUR Workshop Proceedings
Pubblicato in:
CEUR WORKSHOP PROCEEDINGS
Journal
CEUR WORKSHOP PROCEEDINGS
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1