Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

A Comparative Analysis of Datasets for Intrusion Detection in Software-Defined Networks

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Abstract:
Software-Defined Networking (SDN) offers centralized management, programmability, flexibility and scalability but has significant security risks, especially DDoS attacks against the SDN controller, threatening network availability. Machine learning (ML) and deep learning (DL) show promise in mitigating these threats, but their success depends on available datasets quality. Existing SDN datasets often focus narrowly on specific DDoS scenarios or synthetic environments, limiting their real-world applicability. This paper analyzes SDN threats datasets, evaluating their methodologies, features and ML applications. It highlights strengths like realistic traffic emulation and accessibility, alongside limitations such as narrow attack coverage and synthetic biases. A roadmap is proposed to guide the generation of new datasets, emphasizing diverse attacks, richer features, realistic augmentation and public access to enable robust ML/DL-based SDN security solutions.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Dataset; DDoS; IDS; Machine Learning; SDN
Elenco autori:
Gennaro, F. D.; Cucchiarelli, A.; Morbidoni, C.; Spalazzi, L.
Autori di Ateneo:
MORBIDONI Christian
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/864955
Titolo del libro:
CEUR Workshop Proceedings
Pubblicato in:
CEUR WORKSHOP PROCEEDINGS
Journal
CEUR WORKSHOP PROCEEDINGS
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.10.3.0