Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

Recurrent Neural Networks for Guiding Proof Search in Propositional Logic

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Abstract:
DeepSAT is an ongoing research project investigating the use of deep reinforcement learning for automated theorem proving in propositional logic. In contrast to traditional SAT solvers, which focus on satisfiability checking, our aim is to construct formal proofs of validity within the sequent calculus framework. As a preliminary step toward this goal, we have focused on training recurrent neural networks to predict whether a given propositional formula is a tautology. These models will form the basis of the value function in the planned reinforcement learning architecture. Although in its early stages, DeepSAT lays the groundwork for a logic-agnostic, explainable, and energy-efficient alternative to existing neural approaches based on large language models, which require substantial computational resources.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Automated and interactive theorem proving; Deep learning; Propositional logic; Recurrent neural networks
Elenco autori:
Amato, G.; Balestra, N.; Maggesi, M.; Parton, M.
Autori di Ateneo:
AMATO Gianluca
BALESTRA NICOLA
PARTON Maurizio
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/867277
Titolo del libro:
CEUR Workshop Proceedings
Pubblicato in:
CEUR WORKSHOP PROCEEDINGS
Journal
CEUR WORKSHOP PROCEEDINGS
Series
Progetto:
Smart Knowledge: Enhancing Argumentation and Abstraction for Explanation and Analysis
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.11.5.0