Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications
Articolo
Data di Pubblicazione:
2018
Abstract:
Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
EEG, artifact removal, ICA, support vector machine, eyeblink artifact, eye movement artifact, myogenic
artifact, sports science
Elenco autori:
Stone, David B.; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia
Link alla scheda completa:
Link al Full Text:
Pubblicato in: