Data di Pubblicazione:
2020
Abstract:
To plan movements toward objects our brain must recognize whether retinal displacement is due to self-motion and/or to object-motion. Here, we aimed to test whether motion areas are able to segregate these types of motion. We combined an event-related functional magnetic resonance imaging experiment, brain mapping techniques, and wide-field stimulation to study the responsivity of motion-sensitive areas to pure and combined self- and object-motion conditions during virtual movies of a train running within a realistic landscape. We observed a selective response in MT to the pure object-motion condition, and in medial (PEc, pCi, CSv, and CMA) and lateral (PIC and LOR) areas to the pure self-motion condition. Some other regions (like V6) responded more to complex visual stimulation where both object- and self-motion were present. Among all, we found that some motion regions (V3A, LOR, MT, V6, and IPSmot) could extract object-motion information from the overall motion, recognizing the real movement of the train even when the images remain still (on the screen), or moved, because of self-movements. We propose that these motion areas might be good candidates for the “flow parsing mechanism,” that is the capability to extract object-motion information from retinal motion signals by subtracting out the optic flow components.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
area V6; brain mapping; fMRI; flow parsing; optic flow; wide-field
Elenco autori:
Pitzalis, S; Serra, C; Sulpizio, V; Committeri, G; de Pasquale, F; Fattori, P; Galletti, C; Sepe, R; Galati, G
Link alla scheda completa:
Pubblicato in: