Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Competenze
  • Attività

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Competenze
  • Attività
  1. Pubblicazioni

The Prediction of Running Velocity during the 30–15 Intermittent Fitness Test Using Accelerometry-Derived Metrics and Physiological Parameters: A Machine Learning Approach

Articolo
Data di Pubblicazione:
2021
Abstract:
Measuring exercise variables is one of the most important points to consider to maximize physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve both cardiovascular and neuromuscular performance. The 30-15IFT is a field test reflecting the effort elicited by HIIT, and the final velocity reached in the test is used to set the intensity of HIIT during the training session. In order to have a valid measure of the velocity during training, devices such as GPS can be used. However, in several situations (e.g., indoor setting), such devices do not provide reliable measures. The aim of the study was to predict exact running velocity during the 30-15IFT using accelerometry-derived metrics (i.e., Player Load and Average Net Force) and heart rate (HR) through a machine learning (ML) approach (i.e., Support Vector Machine) with a leave-one-subject-out cross-validation. The SVM approach showed the highest performance to predict running velocity (r = 0.91) when compared to univariate approaches using PL (r = 0.62), AvNetForce (r = 0.73) and HR only (r = 0.87). In conclusion, the presented multivariate ML approach is able to predict running velocity better than univariate ones, and the model is generalizable across subjects.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
HIIT; acceleration; global positioning system; heart rate; inertial measurement unit; physiology; support vector machine; training load.
Elenco autori:
Di Credico, Andrea; Perpetuini, David; Chiacchiaretta, Piero; Cardone, Daniela; Filippini, Chiara; Gaggi, Giulia; Merla, Arcangelo; Ghinassi, Barbara; Di Baldassarre, Angela; Izzicupo, Pascal
Autori di Ateneo:
CARDONE DANIELA
CHIACCHIARETTA PIERO
DI BALDASSARRE Angela
DI CREDICO ANDREA
GAGGI GIULIA
GHINASSI BARBARA
IZZICUPO PASCAL
MERLA Arcangelo
PERPETUINI DAVID
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/760421
Link al Full Text:
https://ricerca.unich.it//retrieve/handle/11564/760421/278200/ijerph-18-10854.pdf
Pubblicato in:
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
Journal
  • Dati Generali

Dati Generali

URL

https://www.mdpi.com/1660-4601/18/20/10854
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0