Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

A Proteomic Approach Identified TFEB as a Key Player in the Protective Action of Novel CB2R Bitopic Ligand FD22a against the Deleterious Effects Induced by β-Amyloid in Glial Cells

Articolo
Data di Pubblicazione:
2024
Abstract:
Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of beta-amyloid (A beta 25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented A beta 25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted beta-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
TFEB; autophagy; cannabinoid receptor type II (CBR2); neuroinflammation; proteomic; β-amyloid
Elenco autori:
Polini, Beatrice; Zallocco, Lorenzo; Gado, Francesca; Ferrisi, Rebecca; Ricardi, Caterina; Zuccarini, Mariachiara; Carnicelli, Vittoria; Manera, Clementina; Ronci, Maurizio; Lucacchini, Antonio; Zucchi, Riccardo; Giusti, Laura; Chiellini, Grazia
Autori di Ateneo:
RONCI Maurizio
ZUCCARINI MARIACHIARA
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/843155
Link al Full Text:
https://ricerca.unich.it//retrieve/handle/11564/843155/463990/cells-13-00875.pdf
Pubblicato in:
CELLS
Journal
  • Dati Generali

Dati Generali

URL

https://www.mdpi.com/2073-4409/13/10/875
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0