Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Competenze
  • Attività

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Competenze
  • Attività
  1. Pubblicazioni

Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

Articolo
Data di Pubblicazione:
2024
Abstract:
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10 2 source localization only is at target.
Tipologia CRIS:
1.1 Articolo in rivista
Keywords:
EEG, Resting-state, Regularization parameter, Source reconstruction, Minimum Norm Estimation, Functional connectivity
Elenco autori:
Leone, F.; Caporali, A.; Pascarella, A.; Perciballi, C.; Maddaluno, O.; Basti, A.; Belardinelli, P.; Marzetti, L.; Di Lorenzo, G.; Betti, V.
Autori di Ateneo:
BASTI ALESSIO
MARZETTI Laura
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/843831
Link al Full Text:
https://ricerca.unich.it//retrieve/handle/11564/843831/465222/1-s2.0-S1053811924003938-main.pdf
Pubblicato in:
NEUROIMAGE
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0