Skip to Main Content (Press Enter)

Logo UNICH
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze

UNI-FIND
Logo UNICH

|

UNI-FIND

unich.it
  • ×
  • Home
  • Corsi
  • Insegnamenti
  • Professioni
  • Persone
  • Pubblicazioni
  • Strutture
  • Terza Missione
  • Attività
  • Competenze
  1. Pubblicazioni

AI-Driven Surgical Tool Localization in Microsurgical Training Simulations

Contributo in Atti di convegno
Data di Pubblicazione:
2026
Abstract:
Precise localization of surgical instrument tips is essential for evaluating fine motor skills and enabling automation in microsurgical training. This study presents a deep learning framework based on keypoint heatmap regression to detect instrument tips in frames extracted from simulated surgical videos. A dataset of 1781 annotated frames from seven videos was used for evaluation. The framework was trained with different loss functions—root mean squared error (RMSE), weighted Kullback-Leibler divergence (WKLD), and Dice loss—and compared with direct coordinate regression and segmentation-based models. The RMSE-based model achieved the best performance (MAE = 7.54 pixels), while the WKLD-based model provided more stable predictions across thresholds for blank mask detection. Segmentation and direct regression models showed significantly higher errors. Statistical analyses confirmed the advantage of heatmap regression over baseline approaches. These results support the adoption of heatmap-based keypoint localization for robust tool tracking in simulated surgical environments and its integration into training systems for skill assessment.
Tipologia CRIS:
4.1 Contributo in Atti di convegno
Keywords:
Heatmap regression; Microsurgical simulation; Surgical tools tracking
Elenco autori:
Di Lisio, Flavio; Lasala, Angelo; Villani, Francesca Pia; Mani, Olimpia; Poggetti, Andrea; Pfanner, Sandra; Carbone, Marina; Parchi, Paolo Domenico; Frontoni, Emanuele; Moccia, Sara
Autori di Ateneo:
LASALA ANGELO
MOCCIA SARA
Link alla scheda completa:
https://ricerca.unich.it/handle/11564/868193
Titolo del libro:
Lecture Notes in Computer Science
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.11.5.0